Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair.

نویسندگان

  • Daniel J Kelly
  • Patrick J Prendergast
چکیده

The optimal mechanical properties of a scaffold to promote cartilage generation in osteochondral defects in vivo are not known. During normal daily activities cartilage is subjected to large cyclic loads that not only facilitate nutrient transport and waste removal through the dense tissue but also act as a stimulus to the chondrocytes. In contrast, cartilage tissue is commonly engineered in vitro in a static culture; hence, in many cases, the properties of scaffolds have been tailored to suit this in vitro environment. In this study, a mechanoregulation algorithm for tissue differentiation was used to determine the influence of scaffold material properties on chondrogenesis in a finite element model of an osteochondral defect. It is predicted that increasing the stiffness of the scaffold increases the amount of cartilage formation and reduces the amount of fibrous tissue formation in the defect, but this only holds true up to a certain threshold stiffness above which the amount of cartilage formed is reduced. Reducing the permeability of the scaffold was also predicted to be beneficial. Considering a nonhomogeneous scaffold, an optimal design was determined by parametrically varying the mechanical properties of the scaffold through its depth. The Young's modulus reduced nonlinearly from the superficial region through the depth of the scaffold, while the permeability of the scaffold was lowest in the superficial region. As tissue engineering moves from a science toward a product, engineering design becomes more relevant, and predictive models such as that presented here can provide a scientific basis for design choices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Augmentation of a Collagen/Glycosaminoglycan Biphasic Osteochondral Scaffold with Platelet-Rich Plasma and Concentrated Bone Marrow Aspirate for Osteochondral Defect Repair in Sheep

Objective: This study investigates the combination of platelet-rich plasma (PRP) or concentrated bone marrow aspirate (CBMA) with a biphasic collagen/glycosaminoglycan (GAG) osteochondral scaffold for the treatment of osteochondral defects in sheep. Design: Acute osteochondral defects were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of 24 sheep (n = 6). Def...

متن کامل

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model

BACKGROUND The aim of this study was to investigate the effect of combining rhFGF18 or BMP-7 with a biphasic collagen/GAG osteochondral scaffold (Chondromimetic) on the repair of osteochondral defects in sheep. METHODS Osteochondral defects (5.8x6mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joint of 24 female sheep. Sheep were random...

متن کامل

Development of an antibacterial porous scaffold for bone defect treatment

Background & Aim: The use of bone scaffolds is one of the new and efficient techniques for repairing bone defects that provide a suitable platform for cell proliferation and growth to repair the target tissue. One of the most important causes of failure of transplants and surgical procedures is the invasion of bacteria at the site of the complication and the development of severe infection. The...

متن کامل

Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit

Objective- To determine the effect of selected bone graft on the compression properties of radialbone in rabbit.Design- Experimental in vivo study.Animals- A total of 45 adult male New Zealand white rabbits.Procedures- The rabbits were anesthetized and a one-cm-full thickness piece of radial bone wasremoved using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on theba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2006